杨柯
姓 名:杨柯
性 别:女
出生年月:1987.08
职称/职务:讲师
学位/学历:博士
联系方式:k_yang@whut.edu.cn
教育经历:
2019.11-2020.11,加州大学洛杉矶分校,B.John Garrick风险研究所,国家公派联合培养博士
2017.09-2021.6,武汉理工大学,交通运输工程系,博士
2015.09-2017.6,华中科技大学,工程管理系,硕士
2006.09-2010.6,武汉理工大学,材料成型及控制工程,学士
工作简历:
2021.12-今,武汉理工大学,交通与物流工程学院,讲师
研究方向:
1.状态监控与智能故障预警预测;
2.基于大数据的设备维修智能化;
3.以可靠性为导向的设备健康管理;
4.人工智能算法的研究与应用
主要教学科研成果:
[1]Yang Ke, Liu Yiliu, Yao Yunan, Fan Shidong, Ali Mosleh. Operational time-series data modeling via LSTM network integrating principal component analysis based on human experience [J]. Journal of Manufacturing Systems, 2021,61:746-756.
[2]Yang Ke, Yang Taiwei, Yao Yunan, Fan Shidong. A transfer learning-based convolutional neural network and its novel application in ship spare-parts classification [J]. Ocean & Coastal Management,2021,215:105971.
[3]Yang Ke, Wang Yongjian, Yao Yunan, Fan Shidong. Remaining useful life prediction via long-short time memory neural network with novel partial least squares and genetic algorithm [J]. Quality and Reliability Engineering International, 2021,37(3):1080-1098.
[4]Yang Ke, Yuan Junlang, Xiong Ting, Wang Bin, Fan Shidong. A novel principal component analysis integrating long short-term memory network and its application in productivity prediction of cutter suction dredgers [J]. Applied Sciences, 2021, 11(17), 8159.
[5]Yang Ke, Wang Yongjian, Fan Shidong, Ali Mosleh. Multi-criteria spare parts classification using the deep convolutional neural network method [J]. Applied Sciences, 2021, 11(17), 7088.
[6] Wang Yongjian, Yang Ke, Li Hongguang. Industrial time-series modeling via adapted receptive field temporal convolution networks integrating regularly updated multi-region operations based on PCA [J]. Chemical Engineering Science, 2020, 228:115956.
[7]杨柯,范世东.基于长短期记忆网络时序数据趋势预测及应用[J].推进技术,2021,42(3):675-682.
[8]Yang Ke, Yao Yunan, Fan Shidong. Research on Maintenance Support System Based on Complex Network [C]. In proceedings of the 7th International Conference on Traffic and Logistic Engineering (ICTLE 2019). Aug. 21-23, 2019. Paris, France.
主要科研项目:
高技术船舶科研项目智能船舶1.0研发专项---设备运行与维护智能系统项目(工信部联装函[2016]544),参与;国家工信部项目,2017.01-2019.12。
绞吸式挖泥船数字化切削系统时变模型及可视化研究(编号:5207124),主要参与;国家自然科学基金面上项目,2021.01-2024.12。
扫一扫在手机上查看当前页面